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Verification of the Maxwell–Stefan theory for tracer diffusion in zeolites
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Abstract

Using the Maxwell–Stefan theory for diffusion we derive a simple formula to relate the tracer (i.e. self) diffusivityD∗ and Maxwell–Stefan
(MS), or jump, diffusivity–D. The presence of the interchange coefficient–Dij in the MS formulation causes the self diffusivity to be lower
than the jump diffusivity. Assuming the interchange coefficient to be given by–D/F we derive:

D∗ = –D

1 + Fθ
whereF is a factor to take account of topology effects within the zeolite matrix.

The validity of the MS formulation is established by performing kinetic Monte Carlo simulations for diffusion of methane, perfluo-
romethane, 2-methylhexane andiso-butane in silicalite. Furthermore, it is shown that the exchange coefficient–Dij is a quantification of
correlation effects during the hopping of molecules. Foriso-butane, the isotherm inflection leads to a sharp inflection in the diffusion
behaviour. The influence of molecular repulsive forces on the loading dependence of the jump and self-diffusivities is also discussed with
the aid of published Molecular Dynamics simulations for methane. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The proper description of diffusive transport within ze-
olitic materials is of considerable importance in practice
because of the many applications in catalytic reaction and
separation processes [1–3]. Consider diffusion of a single
component (1) within the matrix of a zeolite structure; the
molecular flux, expressed in molecules per square meter per
second, is given by

N1 = −ρD∇Θ1 (1)

whereρ is the density of zeolite matrix, expressed in unit
cells per cubic meter,Θ1 the molecular loading, expressed
in molecules per unit cell. Eq. (1) defines the transport or
Fick diffusivity D.

A more fundamental way of describing the diffusion pro-
cess is to use chemical potential gradients as driving forces:

N1 = −ρ–D

(
Θ1

RT
∇T ,pµ1

)
(2)
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where–D is variously referred to as the corrected, jump or
Maxwell–Stefan (MS) diffusivity [1–4],R the gas constant
andT the absolute temperature.

The Fick and MS diffusivities are inter-related by

D = –DΓ (3)

whereΓ is the thermodynamic correction factor [3,4]

Γ ≡ Θ1
∂ lnP

∂Θ1
= θ1∂ lnP

∂θ1
(4)

The adsorption isotherm relates the molecular loadingΘ1
to the partial pressure of component 1 in the bulk gas phase
surrounding the zeolite crystals,P. The Langmuir isotherm
gives, for example:

Θ1 = Θ1,satbP

1 + bP
, θ1 ≡ Θ1

Θ1,sat
= bP

1 + bP
(5)

where b is the Langmuir constant,Θ1,sat the saturation
loading andθ1 the fractional occupancy. For the Langmuir
isotherm (5), the thermodynamic correction factor is given
by

Γ = 1

1 −Θ1/Θsat
= 1

1 − θ1 (6)
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Nomenclature

D Fick, or transport, diffusivity of component
1 in zeolite (m2 s−1)

–D Maxwell–Stefan, jump, or corrected,
diffusivity of speciesi in zeolite (m2/s)

–Dij Maxwell–Stefan diffusivity describing
interchange betweeni andj (m2/s)

D∗ tracer or self-diffusivity (m2/s)
F factor introduced in Eq. (17), dimensionless
ki transition probability (s−1)
n number of diffusing species, dimensionless
N number of sorbed particles in KMC

simulation, dimensionless
Ni molar or molecular flux of speciesi,

molecules m−2 s−1

pi jump probability forith process,
dimensionless

P system pressure (Pa)
r particle displacement vector (m)
R gas constant (8.314 J mol−1 K−1)
T absolute temperature (K)
xi ,A fraction of total loading of speciesi in site

A, dimensionless
z number of nearest neighbour sites,

dimensionless

Greek letters
Γ thermodynamic correction factor,

dimensionless
Θi molecular loading, molecules per unit

cell or per cage
Θi,sat saturation loading, molecules per unit

cell or per cage
Θi,sat,A maximum loading of site A, molecules

per unit cell
Θi,sat,B maximum loading of site B, molecules

per unit cell
λ lateral displacement (m)
µi molar chemical potential (J mol−1)
ν jump frequency (s−1)
θi fractional surface occupancy of

componenti
ρ density of zeolite, number of unit

cells per m3

Subscripts
A referring to site A
B referring to site B
1 referring to untagged component 1
1∗ referring to tagged component
int intersections
sat referring to saturation conditions
str straight channel
zz zig-zag channel

In some cases, the sorption characteristics within the zeolite
matrix is described by a two-site Langmuir (2SL) isotherm
[4]:

Θ1 = Θ1,A +Θ1,B = Θ1,sat,AbAP

1 + bAP
+ Θ1,sat,BbBP

1 + bBP
(7)

where the subscripts ‘A’ and ‘B’ refer to two distinct types
of sorption sites, each with its own saturation loading and
Langmuir constant.

The thermodynamic factorΓ for the 2SL isotherm is

Γ = 1

(Θ1,A/Θ1)(1 − (Θ1,A/Θ1,sat,A))

+(Θ1,B/Θ1)(1 − (Θ1,B/Θ1,sat,B))

= 1

x1,A(1 − θ1,A)+ x1,B(1 − θ1,B) (8)

whereθ1,A andθ1,B represent the fractional occupancies in
the sites A and B, each normalised with respect to its own
saturation capacity, andx1,A andx1,B represent the fractions
of the total loading.

The Fick diffusivityD is measured undernon-equilibrium
conditions in which finite gradients of the loading exist.
They are determined by macroscopic methods like gravime-
try, volummetry, chromatography or frequency response
techniques [1,5]. In other experimental procedures, the
self-diffusivities are measured underequilibrium conditions
by microscopic techniques, viz. quasielastic neutron scat-
tering and pulsed field gradient NMR. For self-diffusion,
the flux of the marked, or tagged, species (1∗) is measured
under the influence of the gradient in the loading of marked
molecules∇Θ1∗ keeping the total molecular loading (tagged
and untagged species) constant(∇Θ1∗ + ∇Θ1 = 0):

N1∗ = −ρD∗∇Θ1∗ (9)

In the limit of zero loading the self, jump and transport
diffusivities are all identical:

–D = D∗ = D, Θ1 → 0 (10)

In the published literature, there appears to be no general
inter-relation between these three quantities under condi-
tions of finite molecular loadings. In a recent experimental
study, Jobic et al. [5] have found thatD > –D > D∗ for dif-
fusion of H2 in NaX zeolite. However, these authors did not
provide any theoretical formulae for the inter-relationships.
The objective of our paper is to try to develop a simple
mathematical formula relating the three diffusivities us-
ing the Maxwell–Stefan theory for diffusion in zeolites.
Such an inter-relation is very useful in practice, because
self-diffusivities are easier to measure than the transport dif-
fusivities. Since the transport diffusivities are the ones which
are required in process design an inter-relation would al-
low these to be estimated more simply from self-diffusivity
measurements. To validate the developed relations we per-
form kinetic Monte Carlo simulations of methane, perflu-
oromethane, 2-methylhexane andiso-butane in silicalite.
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We also make use of published molecular dynamics (MD)
simulation results in the literature.

2. The Maxwell–Stefan theory for tracer diffusion
in zeolites

The essential concepts behind a general constitutive rela-
tion for diffusion in multicomponent mixtures were already
available more than a century ago following the pioneering
works of Maxwell [6] and Stefan [7]. These ideas have been
applied to describe diffusion ofn species within a zeolite
matrix using the following set of equations (for complete
background, see [3,4,8–11]).

−ρ θi
RT

∇µi =
n∑
j=1
j �=i

ΘjNi −ΘiNj
Θi,satΘj,sat–Dij

+ Ni
Θi,sat–Di

,

i = 1,2, . . . , n (11)

In the Maxwell–Stefan formulation for zeolite diffusion,
Eq. (11), we have to reckon in general with two types of
Maxwell–Stefan diffusivities:–Dij and –Di . The –Di are the
diffusivites which reflect interactions between speciesi and
the zeolite matrix; these correspond to the jump-diffusivities
introduced earlier. Mixture diffusion introduces an addi-
tional complication due to sorbate–sorbate interactions.
This interaction is embodied in the coefficients–Dij . We
can consider this coefficient as representing the facility
for counter-exchange, i.e. at a sorption site the sorbed
speciesj is replaced by the speciesi. The net effect of this
counter-exchange is a slowing down of a faster moving
species due to interactions with a species of lower mo-
bility. Also, a species of lower mobility is accelerated by
interactions with another species of higher mobility.

Let us apply the above set of Eq. (11) for self diffu-
sion and consider a system consisting of untagged (1) and
tagged (1∗) species; see pictorial representation in Fig. 1. For
self-diffusion the conditions of experiment are such that the

Fig. 1. Pictorial representation of self diffusion using the Maxwell–Stefan diffusion model.

gradients for diffusion of the tagged and untagged species
are equal in magnitude and opposite in sign:

∇θ1 + ∇θ1∗ = 0 (12)

and consequently the fluxes of tagged and untagged species
sum to zero:

N1 + N1∗ = 0 (13)

Applying the restrictions (12) and (13) to Eq. (11) we obtain,
after imposing–D1 = –D1∗ = –D for the tagged and untagged
species:

N1 = −ρΘ1,satD
∗∇θ1

= −ρΘ1,sat
1

(1/–D)+((θ1+θ1∗)/–D1,1∗)
∇θ1 (14)

which shows that the tracer diffusivityD∗ is

D∗ = 1

((1/–D)+ (θ/–D1,1∗))
(15)

where θ is the total occupancy (tagged and untagged
species).

Eq. (15) shows that the tracer, self, diffusivityD∗ reduces
to the Maxwell–Stefan diffusivity only when the interchange
coefficient is exceedingly high:

D∗ → –D when–D1,1∗ → ∞ (16)

In the more general case for finite values of the exchange
parameter–D1,1∗ we would expectD∗ to be smaller than
–D. The exchange parameter–D1,1∗ is an expression of the
correlation between the jumps of the tagged and untagged
species. We should in general anticipate that the interchange
coefficient is related in some way to the mobility of the
species 1; we therefore take

–D1,1∗ = –D

F
(17)

whereF is a factor which could depend on the topology of
the zeolite matrix. If no further information is available, we
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could assumeF = 1. We return later to the question of the
proper estimation of this factorF. Combining Eqs. (15) and
(17) we obtain the following working inter-relation between
the tracer and jump diffusivity:

D∗ = –D

1 + Fθ (18)

Both –D andD∗ are, in general, functions of the molecular
loading within the zeolite. Consider the loading dependence
of the jump diffusivity–D. Mechanistically,–D may be related
to the displacement of the adsorbed molecular species,λ,
and the jump frequency,ν:

–D = 1

z
λ2ν (19)

wherez represent the number of nearest neighbour sites. If
we assume that a molecule can migrate from one site to an-
other only when the receiving site is vacant, the chance that
this will occur will be a function of the fraction of unoccu-
pied sites. The loading dependence of the jump diffusivity
is therefore.

–D = –D(0)× [Vacancy factor] (20)

where–D(0) represents the Maxwell–Stefan diffusivity in the
limit of zero loading and

Vacancy factor= (1 − θ1); Langmuir isotherm (21a)

Additionally, molecular repulsive forces come into play
when determining the jump frequency of molecules. Due to
molecular repulsions the jump frequency increases because
a molecule wishes to escape from the “unfavourable” en-
vironment. Clearly, the molecular repulsions will increase
when the occupancy increases. Including molecular repul-
sions, we propose

–D = –D(0)× [Vacancy factor]× [Repulsion factor] (22)

One simple model for repulsions would be to take:

Repulsion factor= 1

1 − θ1 , Langmuir isotherm (23a)

Combining Eqs. (22) with (21a) and (23a) we note that in-
clusion of repulsions leads to

–D = –D(0) (24)

which shows that the jump diffusivity is independent of load-
ing. This is indeed found to be true in several experimental
studies [1,3,4].

The above relations for the vacancy factor and repulsion
factor are valid for systems exhibiting Langmuir sorption
characteristics. When the 2SL model holds, we expect the
following relation for the vacancy factor

Vacancy factor=x1,A(1 − θ1,A)+x1,B(1 − θ1,B), 2SL

(21b)

and the repulsion factor:

Repulsion factor= 1

x1,A(1−θ1,A)+x1,B(1−θ1,B) , 2SL

(23b)

Even for the 2SL, the presence of repulsive forces will ensure
that Eq. (24) holds and that the jump diffusivity will be
independent of occupancy. When the repulsive factor shows
a more complex dependence on the loading, we could expect
the jump diffusivity to exhibit a more complex dependence
on the occupancy [5].

We now seek verification of the validity of Eq. (18) by
performing kinetic Monte Carlo simulations.

3. Kinetic Monte Carlo simulations with no
repulsive interactions

We first performed kinetic Monte Carlo (KMC) simu-
lations for diffusion of 2-methylhexane (2MH), methane
(CH4) and perfluormethane (CF4) at 300 K in silicalite. Each
component follows Langmuir isotherm behaviour and our
KMC model does not take repulsive forces into considera-
tion. We assume the lattice to be made up of equal sized sites
which can be occupied by only one molecule at a time and
there are no further molecule–molecule interactions. Parti-
cles can move from one site to a neighbouring site via hops.
The probability per unit time to move from one site to an-
other is determined by transition rates for the zig-zag (zz)
and straight (str) channels; see Fig. 2 for a schematic sketch.
For 2MH, the transition probabilities were determined based
on the calculations of Smit et al. [12] and the procedure is
described in detail in our earlier publications [13,14]. For
CH4 and CF4, the transition probabilities were chosen to
match the Molecular Dynamics simulation results of Pickett
et al. [15] and Goodbody et al. [16]. Table 1 lists the input

Fig. 2. Diffusion unit cell for silicalite connecting intersection sites (large
black dots) via straight and zig-zag channels.
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Table 1
Transition probabilities and zero-loading diffusivities for KMC simulations

Species 2MH CH4 CF4 Iso-butane

Isotherm Langmuir Langmuir Langmuir Dual-site Langmuir
Saturation loading 4 (at intersections) 24 12 4 (at intersections), 8 (interior)
kzz→int /[s−1] 5 × 104 1.8 × 1012 2.05 × 1010 4.0 × 1010

kint→zz/[s−1] 5 × 104 1.8 × 1012 2.05 × 1010 6.68 × 106

kstr→int /[s−1] 1.4 × 104 2.1 × 1012 3.25 × 1010 1.05 × 1011

kint→str/[s−1] 1.4 × 104 2.1 × 1012 3.25 × 1010 1.75 × 107

–D(0)/[m2 s−1] 6.86 × 10−14 1.55 × 10−8 3.33 × 10−9 4.40 × 10−12

data on the transition probabilities. For 2MH the maximum
number of sorption sites per unit cell is 4 and the corre-
sponding number for CH4 and CF4 are 24 and 12, respec-
tively. These maximum loadings were taken on the basis of
configurational-bias Monte Carlo simulation results of Vlugt
et al. [17] and experimental data of Heuchel et al. [18].

We employ a standard KMC methodology to propagate
the system (details in [13,14,19–21]). A hop is made every
KMC step and the system clock is updated with variable
time steps. For a given configuration of random walkers on
the silicalite lattice a process list containing all possibleM
moves to vacant intersection sites is created. Each possible
movei is associated with a transition probabilityki . Now, the
mean elapsed timet is the inverse of the total rate coefficient

τ−1 = ktotal =
M∑
i=1

ki (25)

which is then determined as the sum over all processes con-
tained in the process list. The actual KMC time step�t for
a given configuration is randomly chosen from a Poisson
distribution

�t = −ln (u)k−1
total (26)

whereu ∈ [0,1] is a uniform random deviate. The timestep
�t is independent from the chosen hopping process. To se-
lect the actual jump, we define process probabilities accord-
ing topi = ∑i

j=1kj /ktotal. Theith process is chosen, when
pi−1 < ν < pi , whereν ∈ [0,1] is another uniform random
deviate. After having performed a hop, the process list is up-
dated. In order to sample ensemble averages correctly and
to calculate dynamical properties more easily, the variable
time scale is mapped on a periodic time scale for analysing
purposes. In order to avoid surface effects we employ peri-
odic boundary conditions. A choice of 5× 5 × 5 unit cells
ensures freedom from finite size effects [13,14]. About 107

simulation steps were performed for each simulation.
The self-diffusivity tensor is described by its components

in thex-, y- andz-directions:

D∗
α = lim

�t→∞
D∗
α(�t) = 1

2
lim
�t→∞

1

�t
〈r2
α(�t)〉 (27)

with 〈· · · 〉 denoting both ensemble and time averaging,
rα is the particle displacement vector andα is x, y or z.

Accordingly, the self-diffusion coefficient is expressed by

D∗ = 1
3(D

∗
x +D∗

y +D∗
z ) (28)

Following the works of Reed and Ehrlich [19] and Uebing
and coworkers [22,23] we also calculated the thermody-
namic correction factorΓ by relating it to the particle fluc-
tuations in a finite probe volume:

Γ = 〈N〉
〈N2〉 − 〈N〉2

(29)

at equilibrium conditions whereN is the number of adsorbed
particles.

The MS-diffusivity was calculated from the KMC simu-
lations using the following relation [17,20]:

–D = 1

6
lim
�t→∞

1

�t

〈(
1

N

N∑
i=1

(ri (t +�t)− ri (t))

)2〉
(30)

which represents the mean square displacement of the center
of gravity of theN adsorbed particles.

Let us first consider the KMC simulations results for
2MH; see Fig. 3. We note that the KMC simulatedΓ follows
the theoretical Langmuir behaviour 1/(1− θ); see Fig. 3(a).
The jump diffusivity –D shows a linear dependence on the
fractional vacancy, in conformity with Eqs. (20) and (21a),
and the transportD, is seen to be independent of occu-
pancy; see Fig. 3(b). The self-diffusivityD∗ values from
KMC simulations compare very well with the estimations
from Eq. (18), takingF = 1.

The KMC simulation results for CH4 are shown in Fig. 4.
We note, again, that the KMC simulatedΓ follows the theo-
retical Langmuir behaviour 1/(1−θ) and the jump diffusiv-
ity –D follows the loading dependence given by Eqs. (20) and
(21a). The self-diffusivityD∗ determined from KMC simu-
lations agree with the predictions of Eq. (18), takingF = 2.
The reason for stronger correlation effect is to be found in
the fact that for methane we have a total of 24 sorption sites
compared to only 4 for 2MH. Put another way, the factorF
appears to be related to the topology of the system. If no a
priori information is available we see thatF = 1 also gives
a reasonable estimate for the tracerD∗.

The KMC simulation results for the self-diffusivity values
for CF4 are shown in Fig. 5. The predictions of Eq. (18)
works best takingF = 1.5. It is noteworthy that the best
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Fig. 3. Kinetic Monte Carlo simulations of thermodynamic factor, jump-
and transport- and self-diffusivities of 2MH in silicalite at 300 K.

Fig. 4. Kinetic Monte Carlo simulations of thermodynamic factor, jump-
and self-diffusivities of CH4 in silicalite at 300 K.
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Fig. 5. Kinetic Monte Carlo simulations of self-diffusivity CF4 in silicalite
at 300 K.

fit values ofF seems to depend on the number of sorption
sites. For we have a total of 12 sorption sites, intermediate
between those for CH4 and 2MH. TheF value for CF4 is
also intermediate between those for CH4 and 2MH. Even
F = 1 gives a good engineering model for the tracerD∗.

Let us now consider diffusion ofiso-butane in silicalite at
300 K. In an earlier study using configurational-bias Monte
Carlo (CBMC) simulations [17], we have shown that the
sorption isotherm foriso-butane shows an inflection at a
loading of four molecules per unit cell (see Fig. 6). This
inflection is caused becauseiso-butane prefers to locate at
the intersections. At a loading of four molecules per unit cell
all the intersection sites are occupied and an extra “push” is
required to forceiso-butane to occupy the sites within the
channel interiors (straight and zig-zag channels). As can be
seen from Fig. 6, the dual-site Langmuir isotherm (7) is able

Fig. 6. Sorption isotherm foriso-butane at 300 K. Comparison of CBMC
simulations [17] with experimental data [24,25]. The continuous line is
the fitted dual-site Langmuir isotherm.

Fig. 7. Kinetic Monte Carlo simulations of thermodynamic factor, jump-
and self-diffusivities ofiso-butane in silicalite at 300 K.
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Fig. 8. Molecular dynamics simulations of thermodynamic factor, jump-
and transport- and self-diffusivities of CH4 in silicalite at 300 K; MD
data from Maginn et al. [27].

to describe the isotherm very well; the CBMC simulations
agree with the experimental data of Zhu et al. [24] and Millot
et al. [25]. The dual-site parameters foriso-butane used in
the fit shown in Fig. 6 are:bA = 0.028 Pa−1, bB = 4.74×
10−6 Pa−1; Θ1,sat,A = 4,Θ1,sat,B = 8.

The experimental data of Millot et al. [26] for diffusion of
iso-butane were used to choose the values of the transition
probabilities in the straight and zig-zag channels. Further-
more, allowance was made for the preferential location at
the intersections by assigning unequal transition probabili-
ties to hops to an away from the intersections; see Table 1.
For example, we have takenkstr→int = 1.05× 1011 s−1 and
kint→str = 1.75×107 s−1; the ratiokint→str/kstr→int is taken
to be the ratio of the sorption strengths of the channel inte-
riors and intersections, i.e.bB/bA = 1.67× 10−4. The same
ratio is also applied when assigning the transition probabil-
ities to the hops to and away from the zig-zag channels.

Fig. 7 shows the KMCiso-butane simulation results for
Γ , –D andD∗. We see from Fig. 7(a) that the KMC simulated
Γ follows precisely the theoretical trend predicted by Eq. (8)
and shows a sharp maximum atΘ = 4 molecules per unit
cell, when all the intersection sites are completely occupied.
The jump diffusivity–D follows closely the trend anticipated
by Eqs. (20) and (21b) and shows a sharp dip atΘ = 4; see
Fig. 7(b). Eq. (18) withF = 2 gives a good representation
of the KMC simulatedD∗; see Fig. 7(c).

4. MD simulations for CH4 including
molecular repulsions

In the above KMC simulations for all four systems, no
molecular repulsions were taken into account. We now con-
sider the MD simulation results of Maginn et al. [27] for
Γ , –D, D and D∗ which have been reproduced in Fig. 8.
These MD simulations do take account of molecular repul-
sions. The simulatedΓ follows Langmuirian behaviour with
a fitted value ofΘsat = 18.76 molecules per unit cell; see
Fig. 8(a). It is interesting to note that the jump diffusivity
is independent of loading. This is indicative of the fact that
the repulsion forces are playing a role here and therefore
Eqs. (22), (23a) and (24) are operational. The transportD,
which is the product,–DΓ shows increases with 1/(1 − θ);
see Fig. 8(b). The self-diffusivity valuesD∗ agree with the
predictions of Eq. (18), provided we takeF = 3. It appears
that the correlation effects are additionally influenced by the
presence of molecular repulsions.

5. Conclusions

Self-diffusivities in zeolites are strongly influenced by
correlation effects, whereas the jump- and transport-diffusi-
vities are both free from such effects. The Maxwell–Stefan
diffusion theory has been used to derive a simple for-
mula, Eq. (18), to relate the self-diffusivity to the
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jump-diffusivity. KMC simulations for methane, perfluo-
romethane, 2-methylhexane andiso-butane in silicalite show
the validity of the formula derived from the MS theory. The
interchange coefficient–D1,1∗ , in the MS formulation is an
expression of correlation effects which also are affected by
the system topology. Topology effects are taken into account
by introducing a factorF in Eq. (18). Our KMC simulation
results show thatF increases from 1 to 2 when the number
of sorption sites increases. For diffusion ofiso-butane in
silicalite, the isotherm inflection leads to an inflection in the
diffusion behaviour; this is verified by KMC simulations.

When repulsive forces are taken into account, the jump
diffusivity is independent of the fractional occupancy (cf.
Eq. (24)) and the MD simulations for CH4, performed by
Maginn et al. [27] confirm this trend. The MD simulated re-
sults also confirm the validity of Eq. (18) for tracer diffusion.
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